Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.

نویسندگان

  • Yi Hong Ong
  • Caigang Zhu
  • Quan Liu
چکیده

Experimental investigation and optimization of various optical parameters in the design of depth sensitive optical measurements in layered tissues would require a huge amount of time and resources. A computational method to model light transport in layered tissues using Monte Carlo simulations has been developed for decades to reduce the cost incurred during this process. In this work, we employed the Monte Carlo method to investigate the depth sensitivity achieved by various illumination and detection configurations including both the traditional cone configurations and new cone shell configurations, which are implemented by convex or axicon lenses. Phantom experiments have been carried out to validate the Monte Carlo modeling of fluorescence in a two-layered turbid, epithelial tissue model. The measured fluorescence and depth sensitivity of different illumination–detection configurations were compared with each other. The results indicate excellent agreement between the experimental and simulation results in the trends of fluorescence intensity and depth sensitivity. The findings of this study and the development of the Monte Carlo method for noncontact setups provide useful insight and assistance in the planning and optimization of optical designs for depth sensitive fluorescence measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifocal noncontact color imaging for depth-sensitive fluorescence measurements of epithelial cancer.

We propose a multifocal noncontact setup to perform depth-sensitive fluorescence imaging on a two-layered epithelial tissue model. The combination of a microlens array and a tunable lens enables the depth of the multifocal plane to be conveniently adjusted without any mechanical movement of the imaging lens or the sample. This advantage is particularly desirable in the clinical setting. Results...

متن کامل

The effect of electronic disequilibrium on the received dose by lung in small fields with photon beams: Measurements and Monte Carlo study

Background: Prediction of the absorbed dose in irradiated volume plays an important role in the outcome of radiotherapy. Application of small fields for radiotherapy of thorax makes the dose calculation process inaccurate due to the existence of electronic disequilibrium and intrinsic deficiencies in dose calculation algorithms. To study the lung absorbed dose in radiotherapy with smal...

متن کامل

Comparison of measured and Monte Carlo calculated dose distributions from “circular collimators” for radiosurgical beams

Background: Stereotactic radiosurgery is an important clinical tool for the treatment of small lesions in the brain, including benign conditions, malignant and localized metastatic tumors. A dosimetry study was performed for Elekta ‘Synergy S ’ as a dedicated Stereotactic radiosurgery unit, capable of generating circular radiation fields with diameters of 1-5 cm at isocentre using the BEAM/EGS4...

متن کامل

An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method

Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...

متن کامل

Evaluation of Electron Contamination in Cancer Treatment with Megavoltage Photon Beams: Monte Carlo Study

Background: Megavoltage beams used in radiotherapy are contaminated with secondary electrons. Different parts of linac head and air above patient act as a source of this contamination. This contamination can increase damage to skin and subcutaneous tissue during radiotherapy. Monte Carlo simulation is an accurate method for dose calculation in medical dosimetry and has an important role in opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2014